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1. Introduction 

In today’s world, modern criminal networks are constantly changing to maintain secrecy, recruit 

members, and coordinate activities.  Previous research has “focused on analyzing static networks 

that do not change over time… (when) in real life many networks are inherently dynamic” (1).  

By incorporating dynamic trends one can discover important elements of the network and disrupt 

harmful plans (2).  This research provides a potential approach where analysts can compare 

different centrality values and predict how key players change over time (3, 4). 

The purpose of this report is to (1) identify and visualize how a network changes over time,  

(2) calculate centrality measures of a dynamic network, (3) evaluate prediction methods to 

forecast network behavior, and (4) examine how a network instantaneously changes when a node 

is removed.  In section 2, I examine the theory behind a visualization algorithm, centrality 

measures, and prediction methods.  In section 3, I apply this theory to a case study of the Ali 

Baba data set.  Lastly, in section 4, I identify continued efforts with this project and future work 

in the field. 

In order to compute the measures, the open source R programming language and environment 

was used.  Over the past year I have been teaching myself R and I wrote more than 400 lines of 

code for this project.  Sample code was taken from Stanford University (5) as a starting point for 

this project.  This work was supplemented by the “igraph” package, which implements 

algorithms and additional call functions for social network analysis (SNA) (6).  Using this code, 

I was able to visualize the network and calculate centrality measures.   

2. Network Theory 

For this report, Fruchterman-Reingold was chosen for its strengths in visualizing large 

undirected networks using a force directed algorithm.  The advantages are its flexibility, simple 

structure, and interactive nature.  Also, the graph establishes edges that are equal in length and 

reduces the number of intersecting edges.  However, the algorithm has a high runtime for 

extremely large systems.  Fruchterman-Reingold assigns forces as if the vertices were 

electrically charged particles and the edges were springs.  Equation 1 represents the energy of the 

physical system, which is repeated until equilibrium is achieved.  The first term is the attraction 

between connected vertices.  The second is the repulsion between pairs of different vertices  

(5, 7). 

        
 

 
                                                  (1) 
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In a network, individual people are represented as vertices and the relations between them as 

edges (4, 8).  This report examines the undirected connections of vectors, or in simpler terms, the 

association between people (9).  I investigate the density of a network and take a look into four 

key centrality measures (8, 10) used in network analysis.  The density of a network (equation 2) 

for binary data is defined as the number of edges that exist over the total number of possible 

edges for the network (11–13).  Density relates to the speed at which information diffuses 

between the actors (11).  Criminal networks typically remain decentralized enough to remain 

secret, but dense enough to enable coordination (12). 

 
 

       
 (2) 

The “measure of activity” of a network is also known as the degree centrality (equation 3) (2).  

This value determines how many people have direct relationships with an individual (4, 5, 10).  

Degree centrality is a fair approximation of the influence, prominence, or prestige of a node.  For 

simplicity, the more ties a node has (and hence higher degree centrality), the more powerful the 

person is (2, 11).   

        
       

   
 (3) 

Closeness centrality (equation 4) measures the dyad or “number of steps” from each node (u) to 

all other nodes (v) in the network (1, 4, 5, 10, 11).  Actors that are close to others are considered 

more important to the network (11, 12).  Thus, one can conclude that those with a high closeness 

centrality are leaders of the network (2).   

  (4) 

Betweenness centrality (equation 5) is a measure of the number of shortest (puv) going through a 

specific vertex (w) (1, 4, 5, 10, 12).  This value determines the gateway between different 

subgroups and explains the influence over the flow of information (2). 

       
               

          
 (5) 

Lastly, eigenvector centrality (equation 6) represents how close an actor is to other actors who 

are important.  An actor can acquire high eigenvector centrality by being connected to a lot of 

other people or by being connected to others who are highly central (2, 5, 10).  This centrality is 

identified by some as the cohesiveness of the group or the connectedness of an individual node 

(4).  When the eigenvector centrality value is ranked for nodes within the network, it is called a 

“node’s network importance.”  

    
 

 
       

 
    (6)

 

Now that I have explained the centrality measures used, I move on to how to predict them.  

Scientists and analysts agree that even though they are seemingly random, human contact 
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networks are predictable (1).   If one can forecast network behavior, one can stay a step ahead of 

our adversaries (2).  An analyst can use this information to determine when a network is getting 

too dangerous, decide whether intervening is important, and pick out the key players.  Table 1 

represents a few of the prediction methods that are investigated. 

Table 1.  Methods for predicting centrality measures (1). 

Method Description 

Last The last node’s centrality value 

Uniform Moving Average The average of ‘r’ past centrality values 

Weighted Moving Average The most recent weighted highest, with decreasing weights 

Polynomial Regression Model of degree three with epsilon term less than 0.2 

 

To analyze the individual methods, the error is computed between the centrality value of interest 

and the predicted value (equation 7).  It is important to remember that there is no single best 

prediction method for all centrality measures or data sets. 

  
(7)

 

When an analyst sees a network that is becoming increasingly dangerous, sometimes network 

disruption is needed.  In network theory, nodes with the highest betweenness are called bridges 

and those with the highest degree are called hubs.  Scale-free networks, where the degree 

distribution follows a power law, are vulnerable to both bridge and hub removals (13).  The case 

study examines several interesting findings regarding prediction and node removal. 

3. Case Study 

The Ali Baba data set was originally developed in 2003 by the National Security Agency (NSA) 

to test visualization software.  The initial data set contained 752 messages that followed the 

actions of a fictitious terrorist network centralized in southeast England.  The members of the 

suspected network plan to bomb a water treatment facility as revenge following an outbreak of 

cholera among Egyptian school children (14, 15).  Due to the unclassified nature and size of the 

data set, Ali Baba is commonly used as a testbed for SNA technology (15). 

Figure 1 shows the Fruchterman-Reingold visualization for the Ali Baba network from May to 

November.  It is important to notice the increasing number of edges and links as well as the 

visibility of central members.  
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May June July August 

    
September October November  

   

 

Figure 1.  Fruchterman-Reingold network evolution. 

First, I look at the density of the entire Ali Baba network from May to November (figure 2).  In 

June, the network is using 11% of all possible ties, and in October, only 6%.  This tells us that 

the members of the network are having as little interaction as possible, which is certainly 

expected from this sort of criminal network. 

 

Figure 2.  Density of the Ali Baba network. 

Now I examine the centrality measures over time of several key members of the Ali Baba 

network.  Looking at figure 3a, there is a large spike in the closeness centrality from October to 

November, but at this point it is uncertain what that means.  Additionally, all individual’s 

closeness centrality measures follow the same general pattern.  By just using one centrality 

measure I was unable to distinguish between the key players.   
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Next, I examine degree centrality or the “measure of activity.”  Figure 3b is very helpful in 

distinguishing between players.  In the beginning, Tarik has the most power, but this switches 

between June and July.  As the network grows, Imad takes over as the most powerful individual.  

This piece of information is important when it comes to network disruption and node removal.  

Ali Ops and Phil are maintaining their degree measures and current power positions during the 

last few months. 

Betweenness centrality tells us about the flow of information.  Figure 3c shows that Imad and 

Tarik have the greatest influence over the flow of information in November.  But the most 

interesting piece is Phil, who has zero betweenness centrality.  If one were trying to disrupt the 

chain of information, one would not want Phil to be involved because there would be no effect 

on the network. 

  

  

Figure 3.  Centrality measures of Ali Baba key members. 

The last centrality measure of interest is Eigenvector centrality or a “node’s network 

importance.”  In red, Tarik is the most important individual from May to July.  During July and 

August there is a big shift in the network eigenvector centralities.  Tarik moves from number one 

to 16th and in his place are Imad and Ali Ops with number one and two spots, respectively.  It is 

interesting to note that in September, Ali Baba appears as the number three person in the 

network.  Ali Baba has very few links in the network so it is exciting to see him stand out with 

this metric. 
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In the previous section, the motivation and techniques used for prediction of dynamic social 

networks were explained.  Figure 4 illustrates an example of these prediction methods for degree 

centrality.  Figure 4a compares the four techniques and the original centrality values for Imad.  

By computing the error, I determined that a third degree polynomial is the best fit and uniform 

moving average is the worst.  Figure 4b applies the polynomial regression to all key players to 

predict for the month of December.  It appears that Imad and Tarik will continue to gain power, 

while Ali Ops will significantly decrease. 

  

Figure 4.  Prediction for degree centrality. 

The last thing that I examine is the effect of node removal on the Ali Baba network.  Throughout 

my investigation of centrality measures, Imad stands out as the most important individual.  As a 

bridge and a hub in this scale-free network, I remove Imad to see the instantaneous effect on the 

network as a whole and its centrality measures.  Figure 5 shows the removal of Imad in maroon, 

which also leads to the removal of direct links and the loss of members whose on ties were with 

Imad. 

  

Figure 5.  Ali Baba network with node removal. 

The centrality measure results of a node removal are shown in figure 6.  When Imad is removed, 

the closeness and betweenness centrality drop to almost nothing.  Also notice that Ali Ops was 

one of the players temporarily removed since his only tie was with Imad. The degree centrality 

of Tarik and Phil is not significantly changed, so one can assume that they maintain most of their 

ties.  Since Ali Ops is removed, he has zero degree centrality.  Lastly, eigenvector centrality 
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(figure 6d) shows that after Imad is removed, Tarik steps up as the number one individual in the 

network.  Phil also becomes more important, by becoming the eighth ranking individual. 

  

  

Figure 6.  Result of Imad node removal on centrality measures. 

4. Conclusions 

Throughout this summer project, I continued efforts to predict seemingly random criminal 

network behavior by viewing them as dynamic systems.  I used the Fruchterman-Reingold 

algorithm to identify structure, distinguish key players, and understand behavioral roles.  I 

conducted a network trend analysis by looking into degree, closeness, betweenness, and 

eigenvector centrality.  I evaluated several methods of centrality prediction including polynomial 

regression and moving average.  Lastly, I looked into the immediate result of removing a key 

node from a scale free terrorist network. 

Additional prediction research can be done using time series analysis and quality control charts 

to further understand centrality measures of dynamic networks.  Evaluation of other metrics such 

as embeddedness, reachability, and assortivity (13) can also be included in this analysis.  There is 

a need for in-depth research on node removal and how networks adapt to the disruption.  In the 

future, I plan to incorporate these additional topics with a secondary case study of the more 

complex Enron data set (16). 
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  ABERDEEN PROVING GROUND MD  

  21005 

 

 

NO. OF 

COPIES ORGANIZATION 

 

 1 US ARMY RSRCH LAB 

  ATTN  RDRL CII C  T  HANRATTY 

  BLDG 321 RM 4A 

  ABERDEEN PROVING GROUND MD  

  21005 

 

 8 US ARMY RSRCH LAB 

  ATTN  IMAL HRA  

  MAIL & RECORDS MGMT 

  ATTN  RDRL CII A  S H  YOUNG  

  ATTN  RDRL CII  B  BROOME 

  ATTN  RDRL CII B  L  TOKARCIK 

  ATTN  RDRL CII B  R  WINKLER 

  ATTN  RDRL CII T  V M  HOLLAND 

  ATTN  RDRL CIO LL TECHL LIB  

  ATTN  RDRL CIO LT TECHL PUB 

  ADELPHI MD 20783-1197 

 

 


